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We survey the asymptotic behavior of solutions to hyperbolic

conservation laws and balance laws, as well as systems of such
rlaws with the property that each characteristic field is either

genuinely nonlinear or linearly degenerate.

1. INTRODUCTION

We discuss the asymptotic behavior, as t 0S of solutions
to the problem for systems of strictly hyperbolic

_balance laws

U t + f(u)x + g(ux,t) 0 (1.1)

in one space variable. The vector field u(x,t) takes volues
in Rn and the functions f: Rn - Rn and g: Rn x R x R + R7
are assumed smooth. Strict hyperbolicity means that for each
u E Rn  the n x n matrix Vf(u) has n real distinct
eigenvalues (characteristic speeds) X1 (u),...,n (u).

When the supply term g vanishes, (1.1) reduces to the
system of hyperbolic conservation laws

ut + f(u)x - 0. (1.2)

Solutions of (1.2) vanishing at x - conserve the quantity

fu(x,t)dx.
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Even so, Lp norms of u(x,t), p > 1, may decay, as t -I-
provided that the solution is "spreading out". When f(u) is

linear, characteristic speeds are constant so that each mode
travels with its fixed speed and does not decay. When f(u) is
nonlinear, the dependence of characteristic 'speeds upon u
causes the convergence of characteristics so that, even if the
initial data u(x,O) are very smooth, smooth solutions generally
break down in a finite time and shock waves develop. Shocks
and simple waves interact and cancel each other out thus in-
ducing decay. Another indication of decay'is provided by
"entropy inequalities" [1]

r(u) t + q(u)x < 0, (1.3)

satisfied by admissible weak solutions of certain systems (1.2),
as abstract forms of the second law of thermodynamics. The
entropy decay mechanism is particularly effective in the
presence of strong shocks.

Since in the linear case there is no dissipation, one
should expect that solutions of (1.2) will decay faster when
f(u) is "very nonlinear". It turns out that the relevant
condition on f(u) is genuine nonlinearity [2],

VX k(u).rk(u) y 0, u E Rn, (1.4)

where rk(u) is the right eigenvector of Vf(u) associated

with Xk(U). Condition (1.4) is not always satisfied by all

characteristic fields in systems of conservation laws arising
in continuum physics. As a matter of fact, there are classical
examples (e.g. the system of conservation laws of gas dynamics)
where certain characteristic fields are linearly degenerate:

VX (u)'r (u) = 0, u E Rn. (1.5)

One should not expect decay of components of solutions corre-
sponding to such fields.

M 20 Returning to general balance laws (1.1) we remark that
lhumWWm@ . whenever the supply term g is dissipative it collaborates with
wtif ation- - the dissipative mechanism of (1.2) to speed up decay. On the

other hand, when g is not dissipative, there is competition
_ swith the dissipative mechanism of (1.2) the outcome of which

doepends on relative strength.

]bilit Codes In the case of a single genuinely nonlinear conservation law

Availaud/or very precise information is available which is described in
psat. Ispej Section 2. In Sections 3 and 4 we discuss asymptotic behavior



for the single genuinely nonlinear balance law and the general
single conservation law. Known results for systems are
surveyed in Sections 5 and 6.

2. SINGLE CONSERVATION LAW. THE CONVEX CASE

In this section we discuss the asymptotic behavior of solu-
tions to the single conservation law

u + f(u) x = 0, f(u) strictly convex. (2.1)

x

In the genuinely nonlinear case, f"(u) > 0, Lax [2] dis-
covered an explicit solution for the initial value problem of
(2.1) which yields precise information on the asymptotic be-
havior of solutions. A different approach, which Aso applies
when f"(u) may vanish at isolated points, employs the concept
of generalized characteristics [3].

The following proposition [3] exhibits the influence on decay
of (a) the "strength of convexity" of f(u) and (b) the

deployment of initial data.

2.1. Theorem. Assume that

clulp < f"(o) < clulp,  p > o, 0 < c < C, (2.2)

for u in some neighborhood of 0. Let u(x,t) be an
admissible solution of (2.1) on (-o,o) x [0,0) with

X+Lu(y,O)dy = o(Ls), as L - 00, (2.3)

uniformly in x E (_0,0), for some s E [0,I). Then

s-1

u(x,t) - O(tP(ls)+2-), as t ®, (2.4)

uniformly in x E (.,co).

2.2. Corollary. Assume that f(u) satisfies (2.2) in some
neighborhood of 0 and let u(x,t) be an admissible solution
,of (2.1) on (-,-) x 0,-) with u(x,O) E Lq(-oa),

< q < . Then 1

u(x,t) - Ot p+q+l), as t -, (2.5)

uniformly in x C (-m.co).
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The variation of a certain function of the solution also
decays, namely,

2.3. Theorem. Let u(x,t) be an admissible solution of (2.1)
on (_-,-) x [0,-) with initial data u(x,O) E Ll(-,). Then,
for any t E (0,-),

Var{f(u(x,t)) - u(x,t)f'(u(xt))} < 2 I u(xO)Idx. (2.6)
x t

In connection to the above theorem, see the discussion
following Theorem 4.3, in Section 4 below.

When the initial data are periodic, one has information on
the asymptotic shape of the solution: 6

2.4. Theorem. Let u(x,t) be an admissible solution of (2.1)
on x_ ,00) x [0,-) Kith initial data u(x,O) periodic of
mean u. Assume f"(u) 0 0. Then, as t - 0 u(x,t) is

asymptotic to order o(t-1 ) to a periodic sawtooth function.
The number of "teeth" per period equals the number of points in
a period interval in which the function

fX[u(y,O) - Uldx

attains its minimum.

Interesting asymptotic shapes also emerge when initial data
have compact support. In that case solutions behave
asymptotically as N-waves.

2.5. Theorem. Assume f"(0) > 0. Let u(x,t) be an ad-
missible solution of (2.1) on (-,-o) x [0,-) with initial data
of compact support. Then

0 x < n(t)

U(X, t) 10 [- - f'(0)] + O() ri(t) < x < n+(t) (2.7)

0 n+(t 4 x
where

n (t) -f'(O) ; [2I-tf"(0)] 2 + o (2.8)

T~~t ++(

with II+ constants (invariants of the solution) depending

upon the initial data.



When f"(0) vanishes, the N-wave is deformed, as the
following example indicates.

2.6. Theorem. Let u(xt) be an admissible solution on
x 0,) of the equation

U ut + (u2k)x = 0, k = 1,2,..., (2.9)

with initial data of compact support. Then

0 x < n(t)
I i1

u(x,t) ( x)2k- + O(tk) nl(t) < x < T+(t) (2.10)

0 f+(t) < x

where

2k-i 1

rL(t) +2k(,,k,-- I-) kt + 0(1) (2.11)

with I j,+ the same invariants appearing in (2.8).

There are also results (3,4] on the asymptotic behavior of
solutions of (2.1) when the initial data approach different
constants u_ and u+ as x - - and x - -. It turns out

that the solution approaches the wave fan that solves the
Riemann Problem [2] corresponding to (u_,u.

3. SINGLE BALANCE LAW. THE CONVEX CASE

We now consider the single balance law

Ut + f(u)x + g(u,x,t) - O, f(u) strictly convex. (3.1)

Although no analog of Lax's explicit solution of (2.1) is
known for (3.1), the method of generalized characteristics [5]
applies and yields precise information.

As a first example we consider the case where g is
Missipative and we generalize Corollary 2.2.

3.1. Theorem. Assume that f(u) satisfies (2.2) in some
neighborhood of 0 and that



ug(u,x,t) > 0, u E (-0,w), x E ( t E [O,®). (3.2)

Let u(x,t) be an admissible solution of (3.1) on
(-oo) x [0,-) with u(x,O) E Lq(-o,00), 1 < q < -. Then

p+q+l
u(x,t) O(t ), as t o, (3.3)

uniformly in x E (

In the next example g is not necessarily dissipative but
it decays at infinity so that the dissipative mechanism of the

conservation law prevails.

3.2. Theorem. Assume that

jg(u,x,t)I < a(x)b(t), uE(-wo), x E ( t tooo), (3.4)

where a(x) is a bounded function such that a(x) - 0 as

lxi - - while b(t) E LI(0,0). Let u(x,t) be an admissible
solution of (3.1) on (-o,-) E [0,o) with u(x,0) E L oc(-ow)

boc
such that u(x,O) - 0 as lxi - o. Then

u(x,t) = o(I), as t - 0% (3.5)

uniformly in x E (_00,00).

It is also possible to establish decay of the variation of

solutions. Here is a typical result for the periodic case.

3.3. Theorem. Consider the balance law

u t + f(u)x + g(u) - 0 " (3.6)

with f"(u) > a > 0, g(O) 0 0, and g'(u) > 0. Let u(x,t) be
an admissible solution of (3.6) on (_oi)x (0,) with
initial data periodic of period T. Then

Var u(x,t) < 2T (0,3.)

[O,T] - at

* When the initial data have compact support, the solution
attains an asymptotic profile analogous to the N-wave of the
conservation law (Theorem 2.5). We present the result in the
context of a simple concrete example.



3.4. Theorem. Let u(x,t) be an admissible solution on
x 0,0) of the balance law

2

(=) + u  - 0 (3.8)

with initial data of compact support. Then

0 x < n(t)

u(x,t) =+ 0() n (t) < x < YO f

x2+2t -

0 V0(t < X.

The fronts n (t), f+(t) of the wave are determined
asymptotically as solutions of an equation which is too
complicated to be illuminating.

4. SINGLE CONSERVATION LAW. THE GENERAL CASE

Next we consider the single conservation law

ut + f(u)x a 0 (4.1)

without any convexity restrictions on f(u). No explicit
representation of solutions is known. The method of gener-
alized characteristics works but not as effectively as in the
convex case.

In general, decay is to be expected when f"(u) vanishes
only at isolated points. The rate of decay will depend on the
"flattness" of f(u) at points of inflexion. The following
result, established [6,7] by methods of topological dynamics,
starts from very weak assumptions on f(u) but, in return,
yields no information whatsoever on the rate of decay.

4.1. Theorem. Assume that the set of points on which f"(u)
vanishes has no (finite) accumulation point on the real axis.
Let u(x,t) be an admissible solutfon of (4.1) on (-,-) x
J10,-) with initial data that are L -almost periodic on (-.,o)
o mean 0. Then u(x,t) decays to 0, as t 4 , in

L (-

In the test ease where f(u) has only one inflexion point,
one may derive the asymptotic behavior of solutions from the
convex case (Corollar" 2.2) by employing the ordering property of



admissible solutions of (4.1), i.e., that u(x,O) < a~x,O),
x E (_wco), implies u(x,t) < U(x,t), x E (.0,w), t C [0,0).

4.2. Theorem. Assume that f"(u) > 0 for u > 0,
f"(u) < 0 for u < 0 and

cluIp < If"(u)l < Clulp, p > 0, 0 < c < C, (4.2)

for u in some neighborhood of 0. Let u(x,t) be an
admissible solution of (4.1) on (-,-) x [O,-) with
u(x,O) E Lq(-_,0o), 1 < q < . Then

- I

u(xt) = O(t p+q+l) as t c o, a (4.3)

uniformly in x E (-mco).

Using a clever scaling argument, Benilan and Crandall [8]
obtain a decay estimate for orbits of Lipschitz continuous
semigroups generated by homogeneous generators. Since -f(u)

generates a contraction semigroup on L (-W,O), the above
result applies to (4.1), when f(u) is homogeneous, and gives

4.3. Theorem. Assume that for some ( > 2

f(Xu) = xf(u), u E (_o0,0), XE [0,00). (4.4)

Let u(x,t) be an admissible solution of (4.1) on (.,0) X
[0,00) with u(x,0) E Ll(-,oo). Then

Var f(u(x,t)) < I) t E (0,). (4.5)

x

In particular, (4.5) implies lu(x,t)i - O(t- ) which is

in agreement with (2.5), (4.3). Note that (4.5) also yields
information on the decay of ut(x,t). In the convex case,

f(u) - lula, (4.5) reduces to (2.6). It is not known whether
(2.6). or any analog of it, holds for general conservation laws.

The decay of solutions with periodic initial data was in-
vesitgated by Greenberg and Tong [91 who obtain the following

4.4. Theorem. Assume that f(u) is as in Theorem 4.2 and let
u(x,t) be an admissible solution of (4.1) on (-,-) X [0,0)
with initial data periodic of mean 0. Then there is a sequence



tn, with t n , such that

n

p+l)
u(x,t n )  O(t n  n n , (4.6)

uniformly in x E (

The asymptotic shape of. periodic solutions, under the
assumptions of Theorem 4.4, has also been studied [9,10].

Our understanding of the asymptotic behavior of solutions
to the general conservation law (4.1) is still imperfect.
Additional research will be required for the completion of the
program.

5. SYSTEMS OF CONSERVATION LAWS

All available information on the asymptotic behavior of
solutions to systems of conservation laws has been obtained
through explicit studies of wave interactions, within the frame-
work of the construction scheme of Glimm il), and is thus re-
stricted to solutions of small oscillation or variation.

We discuss first the case where the system is genuinely
nonlinear, i.e., (1.4) is satisfied for k = l,...,n. The
crucial observation is that weak waves propagate and interact as
waves of a single conservation law, modulo an "error" which is
at most of second order in the strength of interacting waves.
The general strategy is to show that the cumulative effect of
these errors is insignificant and thus decay of waves in systems
is governed by precisely the same laws that rule decay of waves
in a single conservation law. Systems of two equations are
special in that, in Riemann invariants coordinates, interaction
errors are actually of third order and this makes the study of
decay easier. The earliest result is due to Glimm and Lax (12]:

5.1. Theorem. When the .initial data u(x,O) have small
oscillation, there is a solution u(x,t) on ( x,) x [0,-) to
the strictly hyperbolic, genuninely nonlinear system (1.2) of
two equations. Furthermore, if u(x,O) is periodic of mean 0,

u(x,t) a O(), as t- , (5.1)

* t

while if u(x,O) has compact support,

Var u(xt) O ct ,. as t -, (5.2)
x



Starting from the above result, DiPerna [13] was able to

show that in systems of two equa tions the two characteristic
fields decouple at a rate O(t- 3' 2) and each one approaches,
at a rate O(t-1 /6), an individual N-wave of the type exhibited
in Theorem 2.5. After a careful analysis, Uiu [141 observed that
in a genuninely nonlinear system of n equations interactions
between waves of different families, which produce errors of
second order, are rapidly completed, since these fields
propagate with distinct characteristic speeds. On the other
hand, interactions between waves of the same family, which per-
sist longer, produce errors of the third order. He thus
establishes the following

5.2. Theorem. When the initial data u(x,O) have compact
support and small total variation, there is a solution
u(x,t) on (_x, ) x [0,-) to the strictly hyperbolic, genuinely

nonlinear system (1.2) of n equations and

1
Var u(x,t) = O(t ), as t . (5.3)

x

Furthermore, as t + 0, u(x,t) approaches in L at a rate
O(t-1/6), a system of n N-waves propagating with speeds
X (O),...,Xn(O).

It is not known whether the rate O(t- 1 6) in the above
theorem is optimal.

Next, we consider systems with the propei.ty that each
characteristic field is either genuninely nonlinear or linearly
degenerate. DiPerna [15] studied the asymptotic behavior of
solutions to systems in the above class that..are endowed with an
entropy. Subsequently, Liu [161 established more precise re-
sults based exclusively upon considerations on wave interactions.

5.3. Theorem. Consider a strictly hyperbolic system of n
equations each characteristic field of which is either genuinely
nonlinear or linearly degenerate. When the initial data have

compact support and small total variation, a global solution to
the Cauchy problem exists and, as t - 0, each genuinely non-
liner characteristic field approaches in LI, at a rate
O-1n6), an N-wave, while eYery linearly degenerate character-

istic field approaches in L , at a rate O(t-1' 2), a travelling
N¢ave (generalized contact).

Liu also considers [16,17,18] initial data which approach
different constant states u and u+, as x - - and x + 0,
and shows that the resulting solution approaches the wave fan



that solves the Riemann problem associated with (u_,u+). Thus,
the investigation of asymptotic behavior within the framework of
small solutions and Climm's method is virtually complete. In
contrast, very little is known about the asymptotic behavior of
solutions with large initial data or of solutions to systems
that are not genuinely nonlinear.

6. SYSTEMS OF BALANCE LAWS

The investigation of the asymptotic behavior of solutions
to systems of balance laws (1.1) has only begun recently. Using

an adaptation of the method of Glimm, Liu [19] studies systems
of balance laws

u + f(u) + g(u,x) = 0 (6.1)
t x

under the assumption that g decays rapidly as lxi j and no
characteristic speed is 0. Liu's scheme is based upon an
approximate resolution of discentinuities by (6.1), analogous
to the Riemann problem solution for (1.2) which is the building
block of Glimm's scheme. A typical result is that when the
initial data u(x,O) have small total variation and approach
constant states u and u+ as x + -o and x -+ 4o, there is

a solution u(x,t) of (6.1) on (-,-) X [0,-) which

approaches, as t - -, a fan of waves, which do not produce

interactions and cancellations and essentially consist of simple
and shock waves of the associated conservation law, together with
a steady state solution

df(u) + g(u,x) = 0 (6.2)
dx

of (6.1) which occupies the center.

It is not known what happens in the "resonance" situation

where one of the characteristic speeds is 0. Clearly, a lot of
work is still needed in order to understand completely
asymptotic behavior in systems of balance laws.
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